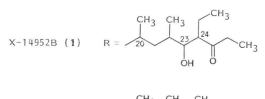
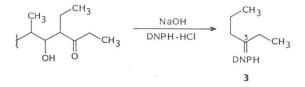

STRUCTURE OF A NEW MACROLIDE ANTIBIOTIC, X-14952B


Sir:

Recently, new macrolide antibiotics possessing various biological activities have been isolated from fermentation broths of streptomycetes.¹⁾ In the course of our search for antimicrobial substances from microorganisms, a new antibacterial antibiotic, X-14952B (1) was isolated from the fermentation broth of a *Streptomyces* sp. In this communication, we wish to report the structure elucidation of 1 by means of ¹H and ¹³C NMR spectroscopic analyses.


Antibiotic 1 [mp 96~98°C; $[\alpha]_{D}^{25}$ +79.4° (c 1.0, CHCl₃); UV λ_{max}^{EtOH} nm 230 sh, 280 sh; IR ν_{max}^{KBr} cm⁻¹ 3450, 2960, 2940, 2775, 1715, 1607, 1340, 1225, 1075] showed an $(M+Na)^+$ ion peak at m/z 802 in the FAB-MS. The molecular formula, $C_{42}H_{69}NO_{12}$ for 1 was deduced from the FAB-MS, elemental analysis and ¹³C NMR. The ¹³C NMR spectrum of 1 demonstrated that 1 is structurally similar to irumamycin (2), the structure of which has been elucidated by ŌMURA et al.²⁾ The ¹³C NMR analysis of 1 revealed the presence of nine methyls, nine methylenes, fourteen methines including nine carbons bonded to oxygen, and an anomeric carbon (δ_c 98.4), a hemiketal carbon (δ_c 94.3), six olefinic carbons, a carbamoyl carbon (δ_c 157.7), an ester carbonyl (δ_c 173.7) and a ketone carbonyl (δ_c 217.5). The appearance of the anomeric and the carbamoyl carbons in addition to five carbons (δ_c 37.0 t, 75.2 d, 74.7 d, 72.2 d,

and a methyl carbon at δ 17.7) arising from the sugar moiety involved in 2 indicated the existence of 3-O-carbamoyl-2-deoxy- β -D-rhamnoside in 1. Furthermore, the chemical shift values of the twenty-three carbons arising from the aglycone moiety of 1 were coincident with those of 2. However, both characteristic signals due to the epoxy carbons at δ_c 66.4 (d) and 64.6 (s) observed in 2 were not present in 1 but an additional signal due to a carbon bonded to oxygen and a methine were observed at δ_c 77.0 (d) and 55.4 (d) respectively. This spectral evidence indicates that 1 possesses the same 20-membered lactone moiety as 2 but differs in the alkyl side chain. The structure of the C_{12} alkyl side chain of 1 involving four methyls, three methylenes, four methines and a ketone carbonyl, was deduced from 2D-NMR analysis and a retroaldol reaction. Contour plot of the 2D protonproton shift correlation spectrum of 1 is shown in Fig. 1. As shown in the 2D-NMR spectrum, the newly observed proton signal (δ 2.65), which overlaps with the methylene signals at the 2position, is assignable to the methine proton at C-24 coupled to the methine proton (δ 3.55, double doublet) at base of the hydroxyl group at C-23 and the methylene proton (δ 1.58). The methine proton at δ 3.55 also couples with the methine proton (δ 1.53) at C-22 bearing a methyl group. Therefore, an ethyl group should be substituted to C-24 because the aforementioned methylene proton couples with the methyl proton at δ 0.83. The location of an ethyl ketone to C-24 was evidenced from a downfield

Irumamycin (2)
$$R = 20$$
 23 CH_3 CH_3 CH_3 CH_3 CH_3

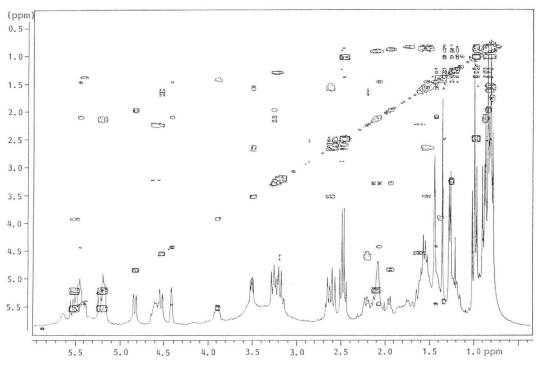


Fig. 1. 2D Proton-proton shift correlation spectrum of X-14952B.

Table 1.	¹³ C and ¹ H	NMR	chemical	shift	for	X-14952B (1).	

Carbon No.	$\delta_{\rm C}^{\rm a}$	$\delta_{\mathrm{H}}{}^{\mathrm{b}}$	Carbon No.	$\delta_{\rm C}^{\rm a)}$	$\delta_{\mathrm{H}}^{\mathrm{b}}$
1	173.7		18-CH ₃	5.7	0.85
2	43.6	2.57, 2.67	19	82.2	4.85
3	94.3	_	20	33.5	1.75
4	35.3	2.1~2.2	20-CH ₃	16.0	0.80
5	117.0	5.50	21	37.2	0.95, 1.20
6	133.7		22	32.8	1.53
6-CH ₃	19.1	1.49	22-CH ₃	12.9	0.83
7	80.3	4.46	23	77.0	3.55
8	135.4		24	55.4	2.67
8-CH ₃	11.0	1.39	$24-CH_2CH_3$	22.9	1.58
9	129.7	5.44	$24-CH_2CH_3$	12.0	0.84
10	27.3	1.80, 2.10	25	217.5	
11	26.2	1.2~1.3	26	37.4	2.50
12	35.5	1.49, 1.68	27	7.6	1.00
13	82.6	3.93	1'	98.4	4.57
14	134.8	5.56	2'	37.0	1.68, 2.28
15	134.6	5.24	3'	75.2	4.65
16	42.3	2.13	3'-OCONH ₂	157.7	
16-CH ₃	17.4	0.88	4'	74.7	3.25
17	78.2	3.26	5'	72.2	3.30
18	34.9	1.97	5'-CH ₃	17.7	1.32

 $^{\rm a)}$ Measured in CDCl3 at 75 MHz with TMS as an internal standard.

^{b)} Measured in CDCl₃ at 400 MHz with TMS as an internal standard.

shift (\varDelta 6.0 ppm) due to intramolecular hydrogen bonding of the ketone carbonyl with the hydroxyl group at 23-position. The ¹H and ¹³C NMR chemical shifts of 1 assigned from comparative analysis with those of 2 are shown in Table 1. To confirm the structure of the alkyl moiety a retroaldol reaction was carried out on 1. A solution of 1 dissolved in ethanol was heated to reflux with 10% aqueous sodium hydroxide and then partially distilled into a solution of 2,4-dinitrophenylhydrazine hydrochloride (DNPH·HCl). The resulting crystals were identified as 3-hexanone dinitrophenylhydrazone 3 by mp 126~129°C; microanalysis ($C_{12}H_{16}$ N_4O_4 ; FAB-MS (MH⁺ at m/z 281); UV λ_{max}^{EtOH} nm (log ε) 228 (4.18), 260 sh, 362 (4.32) and ¹H NMR in CDCl₃ (H-1, δ 1.04; H-2, 2.42; H-4, 2.45; H-5, 1.70 and H-6, 1.02).

The combined evidence of the ¹H, ¹³C NMR spectra and the retroaldol degradation to 3-hexanone support structure 1 for antibiotic X-14952B, a 20-membered macrolide lactone attached to a neutral sugar and a C_{12} alkyl sidechain. It is of interest to note that the slight structural difference in the side-chains of 1 and irumamycin (2) result in the former being primarily an antibacterial and the latter an antifungal agent. Similar structure-activity effects are seen in the concanamycins,^{3,4)} virustomycin A,⁵⁾ bafilomycin⁶⁾ and L-681,110A.⁷⁾

Satoshi Ōmura Akira Nakagawa Nobutaka Imamura Katsuhiko Kushida[†] Chao-min Liu^{††} Lilian H. Sello^{††} John W. Westley^{††}

The Kitasato Institute and School of Pharmaceutical Sciences, Kitasato University Minato-ku, Tokyo 108, Japan [†]Varian Instruments Ltd. 2-2-6 Ohkubo, Shinjuku-ku, Tokyo 160, Japan ^{††}Department of Microbiology,

Roche Research Center, Hoffmann-La Roche Inc.

Nutley, New Jersey 07110, U.S.A.

(Received January 28, 1985)

References

- OMURA, S.: Production, structure, and biological properties of macrolide-like antibiotics. *In* Macrolide Antibiotics — Chemistry, Biology, and Practice. *Ed.*, S. OMURA, pp. 510~546, Academic Press, New York, 1984
- ÖMURA, S.; A. NAKAGAWA & Y. TANAKA: Structure of a new antifungal antibiotic, irumamycin. J. Org. Chem. 47: 5413~5415, 1982
- KINASHI, H.; K. SOMENO & K. SAKAGUCHI: Isolation and characterization of concanamycins A, B and C. J. Antibiotics 37: 1333~ 1343, 1984
- 4) WESTLEY, J. W.; C.-M. LIU, L. H. SELLO, R. H. EVANS, N. TROUPE, J. F. BLOUNT, A. M. CHIU, L. J. TODARO & P. A. MILLER: The structure and absolute configuration of the 18-membered macrolide lactone antibiotic X-4357B (concanamycin A). J. Antibiotics 37: 1738~1740, 1984
- 5) ŌMURA, S.; N. IMAMURA, K. HINOTOZAWA, K. OTOGURO, G. LUKACS, R. FAGHIH, R. TOLMANN, B. H. ARISON & J. L. SMITH: The structure of virustomycin A. J. Antibiotics 36: 1783~ 1786, 1983
- 6) WERNER, G.; H. HAGENMAIER, K. ALBERT, H. KOHLSHORN & H. DRAUTZ: The structure of the bafilomycins, a new group of macrolide antibiotics. Tetrahedron Lett. 24: 5193~5196, 1983
- HUANG, L.; G. ALBERGS-SCHONBERG, R. L. MONAGHAN, K. JAKUBAS, S. S. PONG, O. D. HENSENS, R. W. BURG, D. A. OSTLIND, J. CONROY & E. O. STAPLEY: Discovery, production and purification of the Na⁺, K⁺ activated ATPase inhibitor, L-681,110 from the fermentation broth of *Streptomyces* sp. MA-5038. J. Antibiotics 37: 970~975, 1984